Northfield Flood Study Phase 2 Update

May 16, 2023

Overview

- Process/Background
- Hydrology Updates
- Future Flood Risk
- Carleton Alternatives
- Preferred Alternatives
- Benefit Cost Analysis

Questions

Process

Goals and priorities for alternatives

- Reduce the risk of damage to property from floods
- Reduce the use of emergency measures to combat floods
 - e.g., sandbags, temporary barriers
- Compatibility with Riverfront Plan goals
- Keep/improve public access to the river
- Support a vibrant downtown for visitors and residents
- Preserve historic structures

Flood History

2010 Flood

16,600 cubic feet per second

2016 Flood

16,300 cubic feet per second

Current FEMA FIS Discharge Frequency

Annual Exceedance Probability	Return Period	FIS Discharge (cubic feet per second) Period of Record 1980 to 1996
10%	10-year	7,780
2%	50-year	10,700
1%	100-year	11,800
2010 flood	>500-year	16,600
0.2%	500-year	14,200

Updated Discharge Frequency Estimate

Annual Exceedance Probability	Return Period	FIS Discharge (cubic feet per second) Period of Record 1980 to 1996	Updated Discharge (cfs) Period of Record 1980 to 2020
10%	10-year	7,780	9,200
2%	50-year	10,700	14,000
1%	100-year	11,800	16,200
2010 flood	~100-year	16,600	16,600
0.2%	500-year	14,200	21,600

Potential Future Flood Risk, year 2100

- Future 100-year unlikely to be greater than 24,000 cfs
- Options
 - use current 500-year
 - use 100-year upper confidence limit

Potential Future Flood Risk Inundation Map Comparison

City of Northfield Flood Inundation Mapping

Carleton College Alternatives

Preferred Alternatives

- 1. West Bank Floodwall (Area 1)
- 2. Bridge Square Dry floodproofing (Area 2)
- 3. Stadium Floodwall (Area CC2)
- **4**. West Gym Closure (Area CC3)
- 5. Practice Field Berm (Area CC5)

West Bank Floodwall (Area 1)

- Top of wall elevation 904
- 415 feet of floodwall
- one temporary closure
- interior drainage

possible add-ons

- 906 to 907 top elevation
- replace existing wall
- seepage mitigation system

Flood levels

 floodwall top of elevation of 904 would have less than 1 foot of freeboard

BARR

Bridge Square Dry Floodproofing (Area 2)

- structural reinforcement of walls
- impermeable covering up to 4 feet on exterior wall
- temporary covers over openings
 - seepage mitigation system

BARR

Alt 2-2 Dry Floodproofing Protection Elevation = 904 Seal Building Envelope Opening Covers = 8

Alt 2-3 Wet Flood Proofing Voluntary buyout of lower levels of both structures Install openings to allow water to enter and leave the structures. Retrofit interior of lower level so flooding does not damage the structures.

BARR

Area 3

- minimal benefit for Federal funding
- low floors are 2 feet above the current 100-year flood profile
- not recommended for further consideration

Park flood mitigation

Use updated hydraulic modeling to help screen redevelopment alternatives for parks

Ames

Riverside

Babcock

Stadium Floodwall & Dry Floodproofing (Area CC2)

West Gym Closure (Area CC3)

West Practice Fields Berm (Area CC5)

Flood levels - Carleton College

- Stadium & Track
- West Gym
- West
 Practice
 Fields

Benefits Analysis Inputs/Gaps

Modeled Damages

- Building replacement value
- Building contents value
- Annual operating budget (displacement cost)
- Volunteer costs (during a flood)
- Flood Insurance Policy

Historical Damages

- Damage Frequency
- Pre-mitigation damages
- Post-mitigation damages

Benefit-Cost Analysis

Preferred Alternatives	Estimated Benefit	Cost Range	Benefit Cost Ratio Range
West Bank Floodwall	\$9,900,000	\$1.6M to \$3M*	3.3 to 6.3
Bridge Square Dry Floodproofing	\$500,000	\$0.7M to \$1.1M	0.5 to 0.7
Carleton (Stadium & West Gym)	\$1,200,000	\$1.5M to \$2.9M	0.5 to 0.9
Carleton West Practice Fields Berm	\$1,000,000	\$0.3M to \$0.4M	2.5 to 2.9
TOTAL	\$12,600,000	\$4.1M to \$7.2M	1.7 to 3.0

Notes & Assumptions

- Benefits for downtown areas based on estimated damages based on low floor elevations
- Benefits for Carleton areas are based on historical damages from the 2010 flood
- Cost range includes estimated annual Operations & Maintenance costs
- Cost range assumes 50-year design life for projects
- *Costs would increase and BCR decrease if projects pursue higher levels of protection (e.g., elevation 906 west bank floodwall)

Q&A/Discussion

Contact Info

David Bennett, P.E.

Public Works Director/City Engineer David.Bennett@ci.northfield.mn.us 507-645-3006 Joe Waln, P.E., CFM Barr Engineering Co. jwaln@barr.com 952-832-2984

